Nạp mạng cho lỗ đen
Chúng ta biết câu chuyện cuộc đời của những lỗ đen: Những tàn dư sao siêu mới cực kì đậm đặc này tác dụng lực hút hấp dẫn khủng khiếp đến mức chúng hút lấy bất cứ thứ gì trong vùng phụ cận của chúng (bên trong “chân trời sự cố”), liên tục nạp thêm nhiên liệu cho lỗ đen. Nhưng câu chuyện không dừng lại với lực hấp dẫn. Một khi vật chất bị hút về phía trong lỗ đen, nó quay xung quanh vòng rìa ngoài của rỗ đen và giải phóng một phần xung lượng góc của nó trước khi bị nuốt vào.
Đó là chỗ từ trường phát sinh. Khi các chất khí xoay tròn trong một cái đĩa trên rìa của lỗ đen, chúng tạo ra từ trường của riêng chúng, làm bắn vọt một số chất khí tại phần ngoài của đĩa ra xa lỗ đen. Sự bắn vọt vật chất đó lấy đi xung lượng khỏi phần bên trong của đĩa khí ở gần lỗ đen nhất. Chất khí đó sau đó chậm dần đi và rơi vào miệng con quái vật tăm tối.
Sao neutron: Trái đất x 100 nghìn tỉ lần
Các nam châm làm được nhiều việc hơn là tác dụng lực hút dính trên cái tủ lạnh nhà bạn. Những từ trường nhân tạo mạnh nhất mang lại khả năng hoạt động của máy va chạm hạt và phản ứng nhiệt hạch. Nhưng, như chúng ta sẽ thấy, những nỗ lực hết sức của chúng ta cũng thật mờ nhạt khi so với những từ trường trong biên giới xa xôi của vũ trụ, thí dụ như từ trường phát ra từ những ngôi sao neutron.
Những loại sao siêu mới khác nhau tạo ra những từ trường khác nhau. Những sao siêu mới lớn nhất để lại những lỗ đen trong cơn yên nghỉ của chúng, nhưng những sao siêu mới nhẹ hơn một chút thì tạo ra các sao neutron. Những ngôi sao này cực kì đậm đặc, và có từ trường cực kì mạnh: Trong khi Trái đất ủy mị duy trì một từ trường chừng 0,5 gauss, thì từ trường của một sao neutron đo được là hàng nghìn tỉ gauss. Sao neutron trong ảnh có tên là Cassiopeia A, chụp bởi đài thiên văn tia X Chandra.
Sao nam châm: Xóa sạch thông tin thẻ tín dụng của bạn từ khoảng cách 100.000 dặm
Không phải mọi sao neutron đều ra đời giống nhau. Một số, vì những lí do gì đó hoàn toàn không hiểu được, thuộc về nhóm “sao nam châm”, có từ trường khủng khiếp của một sao neutron bình thường nhân thêm lên chừng 1000 lần. Mặc dù ở xa một khoảng cách bằng nửa đường từ Trái đất lên mặt trăng, một sao nam châm vẫn có thể tước mất thông tin khỏi thẻ tín dụng của bạn.
Các nhà khoa học không biết rõ cho lắm vì sao các sao nam châm lại mạnh hơn sao neutron thông thường nhiều như vậy, nhưng theo thời gian, các nhà thiên văn đang tìm thấy chúng ngày càng nhiều. Khi từ trường ngoại hạng đó bắt đầu làm chậm chuyển động quay của ngôi sao, thì nó giải phóng ra những xung năng lượng mạnh trong bước sóng tia X, có thể nhìn thấy đối với những đài thiên văn tia X của NASA.
Lực nâng con ếch – Vâng, chúng tôi nói lực nâng con ếch
Sự siêu dẫn là một trong những hiện tượng kì lạ mà một mình vật lí cổ điển không thể nào giải thích trọn vẹn. Một số chất liệu, khi làm lạnh đến nhiệt độ gần không độ tuyệt đối, thì đạt tới điện trở bằng không. Do đó, một dòng điện có thể tồn tại vĩnh viễn.
Các nhà khoa học sử dụng các chất liệu siêu dẫn trong những cỗ máy va chạm hạt như LHC, nhưng bạn chẳng việc gì phải đến châu Âu để tận mắt nhìn những thủ thuật thú vị đối với chúng. Dòng điện vĩnh cửu là một chất siêu dẫn có thể nâng các chất liệu, vì dòng điện liên tục đẩy từ trường của đối tượng đang được nâng lên, kể cả một đối tượng sống. Ở đây, các nhà khoa học Hà Lan nâng một con ếch lên trong một từ trường 16 tesla.
Phòng thí nghiệm quốc gia Từ trường cao làm chấn động mặt đất
Trong khi những nam châm nhân tạo không thể giữ nổi ngọn đuốc là những nam châm mạnh nhất trong tự nhiên, thì những nỗ lực tốt nhất của chúng ta không thể xem thường được. Ba địa điểm ở Mĩ – Đại học bang Florida, Đại học Florida, và Phòng thí nghiệm quốc gia Los Alamos ở New Mexico – đã hợp tác lập ra Phòng thí nghiệm Từ trường quốc gia, ngôi nhà chứa những nam châm nhân tạo lớn nhất thế giới. Chỉ một mình
Cho chạy tất cả những nam châm đó chẳng rẻ tiền gì:
Từ trường của ITER sẽ kích ngòi cho sức mạnh nhiệt hạch
Năng lượng nhiệt hạch có điều khiển, tự duy trì, vẫn còn là một giấc mơ, nhưng lí do giấc mơ đó có lẽ đáng theo đuổi là vì từ trường. Lò phản ứng thí nghiệm nhiệt hạch quốc tế (ITER) là một chương trình hợp tác đa quốc gia thể hiện một trong những nỗ lực lớn nhất thế giới nhằm hợp nhân deuterium và tritium, hai đồng vị nặng của hydrogen.
Khi (và nếu) ITER được xây dựng, thì nó sẽ hâm nóng các vật liệu nhiệt hạch thành một trạng thái plasma, phát ra 500 megawatt nhiệt lượng. Cỗ máy khi đó sẽ sử dụng từ trường để giam giữ và điều khiển khối plasma quá nhiệt đó.
MRI: Lén nhìn vào cơ thể bạn
Kể từ khi các nhà khoa học tạo ra được những hình ảnh cộng hưởng từ (MRI) đầu tiên vào đầu những năm 1970, công nghệ đó đã phát triển ngày càng mạnh bởi những bước nhảy vượt bậc – nhiều đến mức Ủy ban Thực phẩm và Dược phẩm (FDA) đã phải ngả mũ chào trước mức độ từ trường mà con người có thể chịu đựng. Tám tesla là cực đại trong năm 2003, cho đến khi các nhà khoa học tại trường đại học
Nhưng đó chưa phải là máy quét MRI mạnh nhất thế giới, Bruker BioSpin, người chế tạo một máy quét 9,4 T cho Viện Công nghệ Massachusetts, đã vượt lên dẫn đầu và thiết kế một máy quét MRI 11,7 T. Năm 2009, trường đại học Texas đã công bố kế hoạch lắp đặt một máy quét MRI 11,7 T tại trung tâm y tế của trường.
Cuối cùng… LHC sẽ vén màn những bí ẩn của Vũ trụ
Máy Va chạm Hadron Lớn, LHC, là một cỗ máy khổng lồ chứa những châm cỡ “khủng”, với những cuộn dây dài 14 mét hoặc dài hơn. Các nam châm siêu dẫn, hoạt động ở mức hơn tám tesla, sẽ đẩy các proton chạy vòng trong vành đai 17 dặm trước khi chúng lao vào nhau và tạo ra một đợt thác các hạt hạ nguyên tử.
Tất cả những thí nghiệm này nó sẽ thực hiện thành công. chúng ta hi vọng vậy. LHC chỉ vừa mới đi vào hoạt động hồi tháng 9, 2008, trước khi những mối nối điện tồi tệ trong hệ thống làm lạnh của các nam châm buộc các thí nghiệm phải dừng lại. Sau gần một năm sau sửa chữa và nâng cấp, rốt cuộc siêu cỗ máy va chạm này đã chạy trở lại hồi tháng 11 năm ngoái, và người ta đang trông đợi nó sẽ mang lại những kết quả mới trong lần chạy chính thức dài hạn bắt đầu từ hôm 30 tháng 3, 2010.
Nguồn: thuvienvatly